180 research outputs found

    A model for liquid-striped liquid phase separation in liquids of anisotropic polarons

    Full text link
    The phase separation between a striped polaron liquid at the particular density and a high density polaron liquid is described by a modified Van der Waals scheme. The striped polaron liquid represents the pseudo gap matter or Wigner-like polaron phase at 1/8 doping in cuprate superconductors. The model includes the tendency of pseudo- Jahn-Teller polarons to form anisotropic directional bonds at a preferential volume with the formation of different liquid phases. The model gives the coexistence of a first low density polaron striped liquid and a second high density liquid that appears in cuprate superconductors for doping larger than 1/8. We discuss how the strength of anisotropic bonds controls the variation the phase separation scenarios for complex systems in the presence of a quantum critical point where the phase separation vanishes.Comment: 10 pages, 3 figure

    Strain accommodation through facet matching in La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4}/Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} ramp-edge junctions

    Get PDF
    Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} and superconducting hole-doped La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APL Mat. 3, 086101 (2015) and may be found at http://dx.doi.org/10.1063/1.492779

    Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction

    Full text link
    Advanced synchrotron radiation focusing down to a size of 300 nm has been used to visualize nanoscale phase separation in the K0.8Fe1.6Se2 superconducting system using scanning nanofocus single-crystal X-ray diffraction. The results show an intrinsic phase separation in K0.8Fe1.6Se2 single crystals at T< 520 K, revealing coexistence of i) a magnetic phase characterized by an expanded lattice with superstructures due to Fe vacancy ordering and ii) a non-magnetic phase with an in-plane compressed lattice. The spatial distribution of the two phases at 300 K shows a frustrated or arrested nature of the phase separation. The space-resolved imaging of the phase separation permitted us to provide a direct evidence of nanophase domains smaller than 300 nm and different micrometer-sized regions with percolating magnetic or nonmagnetic domains forming a multiscale complex network of the two phases.Comment: 5 pages, 4 figure

    Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on TcT_c in the single-layered cuprate superconductors

    Get PDF
    The origin of uniaxial and hydrostatic pressure effects on TcT_c in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation gives axial-dependent pressure coefficients, Tc/Pa>0\partial T_c/\partial P_a>0, Tc/Pc<0\partial T_c/\partial P_c<0, with a hydrostatic response Tc/P>0\partial T_c/\partial P>0 for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher TcT_c is achieved with an "orbital distillation", namely, the less the dx2y2d_{x^2-y^2} main band is hybridized with the dz2d_{z^2} and 4s4s orbitals higher the TcT_c. Some implications for obtaining higher TcT_c materials are discussed.Comment: 6pages, 4 figure

    Direct observation of nanoscale interface phase in the superconducting chalcogenide Kx_{x}Fe2y_{2-y}Se2_2 with intrinsic phase separation

    Get PDF
    We have used scanning micro x-ray diffraction to characterize different phases in superconducting Kx_{x}Fe2y_{2-y}Se2_2 as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (Tc_c\sim32 K), phase separation temperature (Tps_{ps}\sim520 K) and iron-vacancy order temperature (Tvo_{vo}\sim580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below \sim300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the Tps_{ps} and Tc_c is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in Kx_{x}Fe2y_{2-y}Se2_2.Comment: 6 pages, 4 figure

    Magnetic monopoles and superinsulation in Josephson junction arrays

    Get PDF
    Electric-magnetic duality or S-duality, extending the symmetry of Maxwell's equations by including the symmetry between Noether electric charges and topological magnetic monopoles, is one of the most fundamental concepts of modern physics. In two-dimensional systems harboring Cooper pairs, S-duality manifests in the emergence of superinsulation, a state dual to superconductivity, which exhibits an infinite resistance at finite temperatures. The mechanism behind this infinite resistance is the linear charge confinement by a magnetic monopole plasma. This plasma constricts electric field lines connecting the charge-anti-charge pairs into electric strings, in analogy to quarks within hadrons. Yet the origin of the monopole plasma remains an open question. Here we consider a two-dimensional Josephson junction array (JJA) and reveal that the magnetic monopole plasma arises as quantum instantons, thus establishing the underlying mechanism of superinsulation as two-dimensional quantum tunneling events. We calculate the string tension and the dimension of an electric pion determining the minimal size of a system capable of hosting superinsulation. Our findings pave the way for study of fundamental S-duality in desktop experiments on JJA and superconducting films.Comment: 10 pages, 1 figur

    Flux dynamics in NdO1-xFxFeAs bulk sample

    Full text link
    We present data of multi harmonic magneto-dynamic experiments. In particular, we performed ac magnetic susceptibility experiments on layered pnictide-oxide quaternary compound NdOFeAs doped with fluorine. The experiments allow measure the critical temperature and probe the flux dynamic behavior using the third harmonic component of the ac susceptibility of a NdF0.16FeAsO0.84 bulk sample as a function of temperature and frequency of the applied ac magnetic fields. Measured signals are connected with the non-linear superconducting flux dynamic behavior and are characterized by a flux critical states sustaining a superconducting critical current. In this framework the irreversibility line that describes the stable superconducting state has been extracted from the onset of the third harmonic signal vs. frequency. Finally we present also the analysis of the flux dynamic dimensionality in the investigated sample.Comment: 10 pages, 5 figure
    corecore